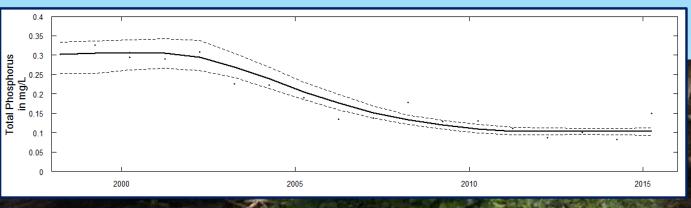


Water Quality Monitoring in the Upper Illinois River Watershed and Upper White River Basin

AWRO

Project 15-400 (continuation of Project 11-500) Brian E. Haggard, Bradley J. Austin, Erin E. Scott ANRC NPS Stakeholder Meeting September 28, 2017


Priority Watersheds

Stream Name	Site ID	Period of Record
Illinois River	IR59	1997-current
Kings River	Kings	2001-2010, 2011-current
West Fork White River	WFWR	2002-current
Osage Creek	Osage	2007-current
White River	Wyman	2009-current
War Eagle Creek	WEC	2009-current
Illinois River	Watts	2009-current
Illinois River	Savoy	2009-current
Baron Fork	Baron	2009-current
Sager Creek	Sager	2011-current
Spring Creek	Spring	2012-current
Mud Creek	Mud	2015-current
Osage Creek	OC112	2015-current
Richland Creek	Richland	2015-current
Town Branch	ТВ	2015-current

-

Transboundary River

Illinois River

Effects of Wastewater Effluent

Rogers, Springdale, Northwest Arkansas Conservation Authority - major improvements to WWTPs

Osage

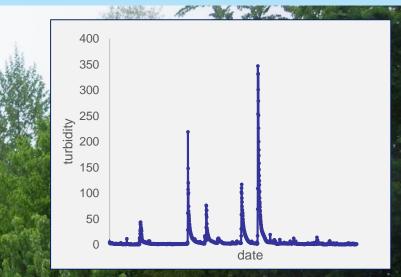
Spring Creek Osage Creek

Spring

Effects of BMPs

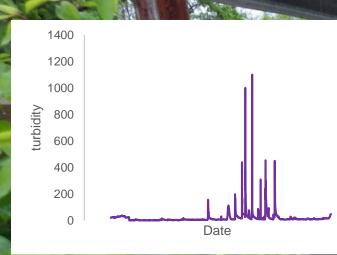
Siloam Springs and ANRC 319 efforts
 Stream channel restorations
 Riparian and wetland restorations

Sager Creek


Transboundary River

50% pasture
50% forest
Little urban
Illinois River tributary

Baron Fork


Municipal Stormwater Management

- Largely urban
- Continuous turbidity from USGS
- City of Fayetteville sediment reduction plan
- Develop models for sediment transport and loading

Mud Creek

Municipal Stormwater Management

Town Branch

 Largely urban
 Continuous turbidity from USGS
 City of Fayetteville sediment reduction plan
 Develop models for sediment transport and loading

TMDLs

West Fork of the White River

 Impaired for turbidity because of sediments
 Beaver Watershed Alliance focus on improving water quality in this river
 Major tributary to White River

Beaver Lake Inflows

Beaver Lake drinking water supply!
 Drives NWA economy – industries, recreation
 City of Huntsville WWTP discharges into WEC

Beaver Lake Inflows

Beaver Lake drinking water supply!
Drives NWA economy – industries, recreation
60% forest, 35% pasture, and 4% urban at "Richland"

Richland Creek

Beaver Lake Inflows

Beaver Lake drinking water supply!
 Drives NWA economy – industries, recreation
 City of Fayetteville WWTP discharges just downstream of "Wyman"
 70% forest, 23% pasture, 7% urban

White River

White River Tributary

Enters White River downstream of Beaver Lake
Major tributary to Table Rock Lake
70% forest, 26% pasture, 4% urban

Kings River

Why is monitoring so important?

- Build long-term databases
- Protect source water quality
- Inform municipalities, state agencies

Constituent loads and water quality trends

Questions?

AWRC